
مدت دوره
170 ساعت
دوره دیتا ساینتیست یک برنامه آموزشی جامع است که به تحلیل و تفسیر دادهها به منظور ایجاد دانش و پیشبینیهای دقیق در موقعیتهای پیچیده میپردازد. در این دوره، مشارکتکنندگان با مفاهیم پیشرفته دادهکاوی، یادگیری ماشین، شبکههای عصبی و تجزیه و تحلیل تصویری آشنا میشوند. مخاطبان این دوره عموماً افرادی هستند که دارای پیشزمینه در علوم کامپیوتر، ریاضیات یا مهندسی هستند و تمایل دارند تحلیل دادهها را با استفاده از الگوریتمهای پیچیده و ابزارهای پیشرفته انجام دهند. اهداف دوره برای دوره دیتا ساینتیست عبارتند از: 1. آشنایی با الگوریتمها و تکنیکهای پیشرفته تحلیل داده و یادگیری ماشین. 2. تسلط بر ابزارها و زبانهای برنامهنویسی مورد استفاده در دیتا ساینس، مانند Python و R. 3. آموزش تفسیر و تحلیل دادههای بزرگ و پیچیده با استفاده از مدلهای احتمالاتی و شبکههای عصبی. 4. توانایی ایجاد مدلهای پیشبینی بر اساس دادهها و ارزیابی عملکرد آنها. 5. آشنایی با مفاهیم تجزیه و تحلیل تصویری و پردازش زبان طبیعی در دادهها. این دوره افراد را برای بهرهبرداری از دادهها به صورت گسترده تر و پیشرفتهتر آماده میکند و آنها را قادر میسازد تا به راحتی دادههای پیچیده را تحلیل کرده و دانش قابل استفاده را از آنها استخراج کنند.
PROBABILITY THEORY : 25H
Introduction to probability:
- Probability and Statistics
- Basic Concepts
- Rules
- Conditional Probability
- Bayes Theorem
Probability distributions
- Random Variables
- Bernoulli Distribution
- Binomial Distribution
- Normal Distribution
- Central Limit Theorem
- Mathematical Expectation
- Computer simulation
Statistical Analysis
- Descriptive Statistics
- Inferential Statistics
- Computer simulation
Statistical Analysis
- Descriptive Statistics
- Inferential Statistics
- Computer simulation
IBM SPSS statistics
- Introducing IBM SPSS
- Descriptive Statistics in SPSS
- Computer simulation
- Hypothesis Testing
- Computer Simulation
Independence
- Concepts
- Computer Simulation
- Odds Ratios
- Chi Square Test
- Fisher Exact Test
- T Independent Test
- Two-Sample T-Test
Variance Analysis
- Concepts and Implications
- Computer Simulation
- Follow-up Test
- Two-Way ANOVA
- Understanding Covariance Test
- Steps to Implementing Covariance Test
Round up topics in statistics
- Correlation Test
- Non-Parametric Test
- AB Test
- Computer Simulation
- Final Statistics Project
DATA MINING: 45 H
Data Mining Introduction
- Introducing Data Mining
- Data Description and Data Mining Methods
- SPSS Modeler Introduction
- Data Entry in SPSS Modeler
- Data Quality
- Handling Out of Range Data
- Handling Outliers and Missing Data
Data transformation
- Data Normalisation
- Feature Creation
- Discretisation
- Data Aggregation
- Data Smoothing
- Computer Simulation
Dimensionality reduction
- Feature Selection
- Feature Extraction
- Sampling
- Data Integration
- Project: Analysing Customer Behaviour
Rule based Predictive models
- Introducing Predictive Models
- Decision Tree
- Rule Assessment and Interpretation
- Classification Model Assessment
- Regression Model Assessment
Rule based Predictive models
- Introducing Predictive Models
- Decision Tree
- Rule Assessment and Interpretation
- Classification Model Assessment
- Regression Model Assessment
Unbalanced Data
- Challenges in Handling Unbalanced Data
- Implementing Decision Tree
- Confusion Matrix
- Regression Tree in SPSS
Statistical predictive models
- Naïve Bayes
- Linear Regression
- Parameter Estimation
- Model Hypothesis Tests
- Implementing Linear Regression
- Logistic Regression
- Implementing Logistic Regression
Ensemble predictive models
- Introducing
- Stacking
- Bagging
- Boosting
- Implementing Ensemble Learning in Classification
- Implementing Ensemble Learning in Regression
Unsupervised Learning
- Introducing Clustering
- Hierarchical Clustering
- K-Means Algorithm
- DB-SCAN Algorithm
- Association Rules
- Apriori Algorithm
PYTHON FUNDAMENTAL:55H
Introduction and basics
- Introduction
- Interpreter vs. Compiler
- Understanding and Getting to Know Python
- More on Variables and Strings String Formatting
- Displaying Numbers, Variables and Strings
Program flow control
- Conditions with IF ELIF ELSE
- FOR Loops
- Understanding CONTINUE and BREAK
- Augmented Assignments
- WHILE Loops
- Nesting Conditions and Loops
Understanding sequences
- Lists in Python
- Understanding Iterators
- Using Ranges
- Ordered Sets Using Tuples
- Binary and Hex Numbers in Python
Understanding mappings
- Dictionaries and More
- Sets in Python
Handling files, Input and output
- Reading and Writing Text Files
- Appending to Files
- Writing Binary Files Manually
- Using PICKLE to Write Binary Files
- Shelves
- Manipulating Data with Shelves
- Updating With Shelves
Modules and functions – P1
- Modules and Import
- Standard Python Library
- Time and Date in Python
- Timezones and PYTZ
- Checking Path
- Functions in Python
- Scope in Functions
- Global Variables
Modules and functions – P2
- Importing Techniques
- Underscores in Python
- Namespaces
- Recursion
- Nonlocal
- LEGB
Exceptions
- Reviews
- Handling Exceptions
- Raising Exceptions
- Customising Exceptions
Object oriented programming – P1
- OOP and Classes
- Instances, Constructors, Self and More
- Class Attributes
- Methods
- Non Public and Mangling
- DocString and Raw Literals
- Compile Time
- Getters and Properties
Object oriented programming – P2
- Getters and Setters
- Encapsulation
- Inheritance
- Subclasses and Overloading
- Calling Super Methods
- Overriding Methods
- Polymorphism
- Duck Test
Object oriented programming – P3
- Composition
- Aggregation
- Delegation
- Abstract Classes and Interfaces
PYTHON FOR DATA SCIENCE:25H
Working with databases – p1
- Introduction to Databases
- Database Concepts
- Keys
- Introduction to SQlite
- CRUD on SQlite
- Introducing ‘Cursor’
Working with databases – p2
- Tools of the Trade in Big Databases
- Configuring MySQL
- Connection Error Handling
- CRUD in MySQL
Working with databases – p2
- Tools of the Trade in Big Databases
- Configuring MySQL
- Connection Error Handling
- CRUD in MySQL
Introducing API concepts – p1
- Introduction to API
- Discussing Rest-API
- API Call
- Getting to Know JSON Format
- Working with Restful APIs
- Project: Getting Data From ‘NASA’ Mars Rover
Introducing API concepts – p2
- Concepts of fastAPI
- Writing Your First API
- Path Parameters
- Enumerations
- Query Parameters
Crawling
- What Are Crawlers?
- Selenium
- Quick Overview on CSS Styling
- Quick Overview on HTML Tags
- Extracting the Exact Information From Websites
- Project: Crawling Digikala
Introducing numpy
- Jupyter Notebook
- Introducing Numpy
- Creating a Numpy Array
- Numpy Array vs List
- Calculating Norm and Inner Product
- Matrices in Numpy
- Solving Linear Systems in Numpy
Introducing matplotlib
- Getting to Know Charts
- Histograms
- Piechart
- Boxplot
- Errorbar
Introducing pandas
- Reading Files Into Pandas
- Matrix Manipulation in Pandas
- Introducing Data Frames
- Working With Rows and Columns
Introducing Scikit-learn
- Data Cleaning
- Data Encoding
- Re-scaling Data
- Introducing Outliers
- Outlier Detection
- Project: Avocado Price Estimation
Scipy
- Quick Intro to Scipy
Final Project
- Dataset Introduction
- Data Pre-processing Modules
- KNN Estimator
- Confusion Matrix of KNN Results
- Creating CNN Model
- CNN Results
درخواست مشاوره
برای کسب اطلاعات بیشتر درباره این دوره درخواست مشاوره خود را ارسال کنید و یا با ما در تماس باشید.
درخواست مشاورهنظرات
تماس با ما