SANS SEC504:

- 1: Incident Response and Computer Crime Investigations
 - Incident Response
 - Common incident response mistakes
 - Incident goals and milestones
 - Post-incident activities
 - Digital Investigations
 - Asking and answering the right questions
 - Pivoting during an investigation
 - Taking notes and writing reports
 - Artifact and event-based timelines
 - Live Examination
 - How to start, even with minimal information
 - Examining a live environment
 - Identifying abnormal activity
 - Digital Evidence
 - Understanding what digital evidence is and how to collect it
 - The role and elements of a chain of custody
 - How to collect digital evidence
 - Network Investigations
 - Analyzing packet captures using tcpdump
 - Web proxy logs
 - Memory Investigations
 - How to investigate memory images using the Volatility framework
 - Malware Investigations
 - Basic approaches for investigating malware
 - Best practices for working with malware
 - Monitoring the environment using snapshot and continuous recording tools
- 2: Recon, Scanning, and Enumeration Attacks
 - Introducing the MITRE ATT&CK Framework
 - Attacker evolution and the network for tool, technique, and practice (TTP) mapping
 - Using the MITRE ATT&CK Framework for smarter adversary assessment
 - How we integrate SEC504 with the MITRE ATT&CK Framework
 - Reconnaissance
 - What does your network reveal?
 - Are you leaking too much information?
 - Using certificate transparency for pre-production server identification
 - Domain Name System harvesting
 - Data gathering from job postings, websites, and government databases
 - Identifying publicly compromised accounts
 - FOCA for metadata analysis

- Aggregate OSINT data collection with SpiderFoot
- Mastering SHODAN searches for target discovery
- Scanning
- o Learn the techniques attackers use to enumerate your networks
- o Locating and attacking personal and enterprise Wi-Fi
- Identifying and exploiting proprietary wireless systems
- Port scanning: small and large-scale enumeration tasks
- Quick and effective intel collection from web servers
- Characterizing network targets by OS, service, patch level
- Vulnerability scanning and finding prioritization
- Enumerating Windows Active Directory Targets
- Windows Active Directory domain enumeration with BloodHound, SharpView
- Windows Command and Control with PowerShell Empire
- Operating system bridging from Linux to Windows targets
- o Defending against SMB attacks with sophisticated Windows networking features
- o Understanding SMB security features through Windows Server 2019
- Defense Spotlight: DeepBlueCLI
- Using PowerShell to enumerate Windows systems
- Fast and effective Windows event log analysis
- o Leveraging PowerShell output modifiers for reporting, analysis
- Characterizing common Windows scans and attacks against Windows servers
- 3: Password and Access Attacks
 - Password Attacks
 - How attackers bypass account lockout policies
 - Choosing a target protocol for password guessing attacks
 - Techniques for choosing password lists
 - How attackers reuse compromise password lists against your organization
 - Techniques for password cracking
 - Recommendations for password cracking in your organization
 - Defense Spotlight: Log Analysis with Elastic Stack (formerly ELK)
 - Establishing a lightweight log analysis system with Elasticsearch, Logstack, Beats, and Kibana
 - Understanding Linux and UNIX authentication logging data
 - Configuring Filebeat for simple log ingestion
 - Using Kibana to identify password attack events
 - Customizing Kibana visualization for effective threat hunting
 - Understanding Password Hashes
 - Hashing algorithms, processes, and problems
 - o Understanding Windows hashing function through Windows Server 2019
 - Password hash function strength and quality metrics
 - Extracting Windows domain password hashes using built-in tools
 - Getting password hashes from Windows 10 systems
 - Decoding UNIX and Linux password hashes
 - Mitigating GPU-based cracking: PBKDF2, bcrypt, and scrypt
 - Password Cracking Attacks

- o John the Ripper: single, wordlist, incremental, and external cracking modes
- o Cracking hashes with Hashcat: straight and combinator attacks
- Effective hash computation using mask attacks
- o Breaking user password selection weaknesses with Hashcat rules
- Three simple strategies for defeating password cracking
- Defense Spotlight: Domain Password Auditing
- Enumerating Windows domain settings with simple PowerShell one-line scripts
- o Characterizing systemic behavior in user password selection
- o Identifying bad password offenders in your organization
- o Mitigating password sharing in Windows domains
- Netcat: The Attacker's Best Friend
- o Transferring files, creating backdoors, and shoveling shells
- Netcat relays to obscure the source of an attack
- Replay attacks with Netcat
- 4: Public-Facing and Drive-By Attacks
 - Metasploit Attack and Analysis
 - Software Update Browser Exploitation
 - System Resource Utilization Database Analysis
 - Command Injection Attack
 - Cross Site Scripting Attack
 - SQL Injection Attack
 - SQL Injection Log Analysis
 - Topics
 - o Using Metasploit for System Compromise
 - Using the Metasploit framework for specific attack goals
 - Matching exploits with reconnaissance data
 - Deploying Metasploit Meterpreter Command & Control
 - o Identifying Metasploit exploit artifacts on the system and network
 - Drive-By and Watering Hole Attacks
 - Examining the browser attack surface
 - o Identifying browser vulnerabilities with JavaScript
 - Code-executing Microsoft Office attacks
 - Backdooring legitimate code with attacker payloads
 - Defense Spotlight: System Resource Usage Monitor (SRUM)
 - Assessing attacker activity with Windows 10 app history
 - Extracting useful data from the protected SRUM database
 - o Converting raw SRUM data to useful post-exploit analysis
 - Web Application Attacks
 - Account harvesting for user enumeration
 - Command injection attacks for web server remote command injection
 - SQL Injection: Manipulating back-end databases
 - Session Cloning: Grabbing other users' web sessions
 - Cross-Site Scripting: Manipulating victim browser sessions
 - Defense Spotlight: Effective Web Server Log Analysis
 - o Using Elastic Stack (ELK) tools for post-attack log analysis

- Configuring Filebeat for web server log consumption
- Using the Kibana Query Language (KQL) to identify custom web attacks
- Hunting for common SQL Injection attack signatures
- o Decoding obfuscated attack signatures with CyberChef
- 5: Evasion and Post-Exploitation Attacks
 - Advanced network pivoting with Metasploit
 - Insider network attack event analysis
 - Hijacking Windows: Responder attacks
 - Post-exploitation command history analysis
 - Hiding (and finding) valuable data on Windows servers
 - Selectively editing Windows event logs
 - Network threat hunting with RITA
 - Topics
 - Endpoint Security Bypass
 - Evading EDR analysis with executable manipulation: ghostwriting
 - o Manipulating Windows Defender for attack signature disclosure
 - Using LOLBAS to evade application whitelisting
 - Adapting Metasploit payloads on protected platforms
 - Pivoting and Lateral Movement
 - Pivoting from initial compromise to internal networks
 - Effective port forwarding with Meterpreter payloads
 - Leveraging compromised hosts for internal network scanning, exploitation
 - Windows netsh and attacker internal network access
 - o Privileged Insider Network Attacks
 - Leveraging initial access for network attacks
 - Deploying packet sniffers, MITM attack tools
 - o Native packet capture on compromised Windows hosts
 - Abusing weak protocols: DNS, HTTP
 - Network service impersonation attacks with Flamingo
 - o Abusing Windows name resolution for password disclosure
 - Covering Tracks
 - o Maintaining access by manipulating compromised hosts
 - Editing log files on Linux and Windows systems
 - Hiding data in Windows ADS
 - Network persistence through hidden Command & Control
 - Defense Spotlight: Real Intelligence Threat Analytics (RITA)
 - Characterizing advanced Command & Control activity over the network
 - Capturing and processing network data with Zeek
 - Network threat hunting: beacons, long connections, strobes, and DNS analysis
 - Post-Exploitation Data Collection
 - Harvesting passwords from compromised Linux hosts
 - Password dumping with Mimikatz and EDR bypass
 - Defeating Windows and macOS password managers
 - Windows keystroke logging attacks
 - o Data exfiltration over blended network protocols

- Where To Go From Here
- Techniques for solving the problem of needing time for study
- Understanding the Forgetting Curve dilemma
- Techniques for developing long-term retention from what you have learned
- Building study strategies for certification, applying your knowledge

SANS FOR500:

- 1: Digital Forensics and Advanced Data Triage
 - Windows Operating System Components
 - Key Differences in Modern Windows Operating Systems
 - Core Forensic Principles
 - Analysis Focus
 - Determining Your Scope
 - Creating and Investigative Plan
 - Live Response and Triage-Based Acquisition Techniques
 - RAM Acquisition and Following the Order of Volatility
 - Triage-Based Forensics and Fast Forensic Acquisition
 - Encryption Detection
 - Registry and Locked File Extraction
 - Leveraging the Volume Shadow Service
 - KAPE Triage Collection
 - Windows Image Mounting and Examination
 - NTFS File System Overview
 - Document and File Metadata
 - File and Stream Carving
 - Principles of Data Carving
 - Recovering File System Metadata
 - File and Stream Carving Tools
 - Custom Carving Signatures
 - Memory, Pagefile, and Unallocated Space Analysis
 - Artifact Recovery and Examination
 - Chat Application Analysis
 - o Internet Explorer, Edge, Firefox, Chrome, and InPrivate Browser Recovery
 - Email and Webmail, including Yahoo, Outlook.com, and Gmail
- 2: Registry Analysis, Application Execution, and Cloud Storage Forensics
 - Registry Forensics In-Depth
 - Registry Core
 - Hives, Keys, and Values
 - Registry Last Write Time
 - MRU Lists
 - Deleted Registry Key Recovery
 - o Identify Dirty Registry Hives and Recover Missing Data

- Rapidly Search and Timeline Multiple Hives
- Profile Users and Groups
- o Discover Usernames and Relevant Security Identifiers
- Last Login
- Last Failed Login
- Login Count
- Password Policy
- Core System Information
- Identify the Current Control Set
- System Name and Version
- Document the System Timezone
- o Wireless, Wired, VPN, and Broadband Network Auditing
- o Perform Device Geolocation via Network Profiling
- o Identify System Updates and Last Shutdown Time
- Registry-Based Malware Persistence Mechanisms
- User Forensic Data
- Evidence of File Downloads
- o Office and Microsoft 365 File History Analysis
- Windows 7, Windows 8/8.1, Windows 10 Search History
- Typed Paths and Directories
- Recent Documents (RecentDocs)
- Open Save/Run Dialog Boxes Evidence
- Application Execution History via UserAssist, Prefetch, Windows 10 Timeline, System Resource Usage Monitor (SRUM), and BAM/DAM
- Cloud Storage Forensics
- Microsoft OneDrive
- OneDrive Files on Demand
- Microsoft OneDrive for Business
- OneDrive Unified Audit Logs
- Google Drive
- Google Workspace (G Suite) File Stream
- Google Workspace (G Suite) Logging
- Dropbox
- Dropbox Decryption
- Dropbox Logging
- Box Drive
- Box Backup and Sync
- Synchronization and Timestamps
- Forensic Acquisition Challenges
- User Activity Enumeration
- 3: Shell Items and Removable Device Profiling
 - Shell Item Forensics
 - Shortcut Files (.lnk) Evidence of File Opening
 - Windows 7-10 Jumplists Evidence of File Opening and Program Execution
 - Shellbag Analysis Evidence of Folder Access

- USB and BYOD Forensic Examinations
- Vendor/Make/Version
- Unique Serial Number
- Last Drive Letter
- MountPoints2 Last Drive Mapping Per User (Including Mapped Shares)
- Volume Name and Serial Number
- Username that Used the USB Device
- Time of First USB Device Connection
- Time of Last USB Device Connection
- Time of Last USB Device Removal
- Auditing BYOD Devices at Scale
- 4: Email Analysis, Windows Timeline, SRUM, and Event Logs
 - Email Forensics
 - Evidence of User Communication
 - How Email Works
 - Email Header Examination
 - Email Authenticity
 - Determining a Sender's Geographic Location
 - Extended MAPI Headers
 - Host-Based Email Forensics
 - Exchange Recoverable Items
 - Exchange Evidence Acquisition and Mail Export
 - Exchange Compliance Search and eDiscovery
 - Unified Audit Logs in Office 365
 - Google Workspace (G Suite) Logging
 - Recovering Data from the Google Workspace (G Suite)
 - Web and Cloud-Based Email
 - Webmail Acquisition
 - Email Searching and Examination
 - Mobile Email Remnants
 - Business Email Compromise
 - Forensicating Additional Windows OS Artifacts
 - Windows Search Index Forensics
 - Extensible Storage Engine (ESE) Database Recovery and Repair
 - db and Thumbcache Files
 - Windows Recycle Bin Analysis (XP, Windows 7-10)
 - Windows 10 Timeline Activities Database
 - System Resource Usage Monitor (SRUM)
 - Connected Networks, Duration, and Bandwidth Usage
 - Applications Run and Bytes Sent/Received Per Application
 - Application Push Notifications
 - Energy Usage
 - Windows Event Log Analysis
 - Event Logs that Matter to a Digital Forensic Investigator
 - EVTX and EVT Log Files

- Track Account Usage, including RDP, Brute Force Password Attacks, and Rogue Local Account Usage
- Audit and Analyze File and Folder Access
- Prove System Time Manipulation
- Track BYOD and External Devices
- Microsoft Office Alert Logging
- Geo-locate a Device via Event Logs
- 5: Web Browser Forensics
 - Browser Forensics
 - History
 - \circ Cache
 - Searches
 - \circ Downloads
 - o Understanding Browser Timestamps
 - Chrome
 - Chrome File Locations
 - o Correlating URLs and Visits Tables for Historical Context
 - History and Page Transition Types
 - Chrome Preferences File
 - Web Data, Shortcuts, and Network Action Predictor Databases
 - Chrome Timestamps
 - Cache Examinations
 - Download History
 - Web Storage, IndexDB, and the HTML5 File System
 - Chrome Session Recovery
 - Chrome Profiles Feature
 - Identifying Cross-Device Chrome Synchronization
 - Edge
 - Chromium Edge vs. Google Chrome
 - History, Cache, Cookies, Download History, and Session Recovery
 - Microsoft Edge Collections
 - Edge Internet Explorer Mode
 - Chrome and Edge Extensions
 - o Edge Artifact Synchronization and Tracking Multiple Profiles
 - Edge HTML and the Spartan.edb Database
 - Reading List, WebNotes, Top Sites, and SweptTabs
 - Internet Explorer
 - IE Forensic File Locations
 - History Files: Index.dat and WebCache.dat
 - Cache Recovery and Timestamps
 - Microsoft Universal Application Artifacts
 - IE Download History
 - Gaining Access to Credentials Stored in the Windows Vault
 - Internet Explorer Tab Recovery Analysis
 - o Cross-Device Synchronization, Including Tabs, History, Favorites, and Passwords

- Firefox
- Firefox Artifact Locations
- SQLite Files and Firefox Quantum Updates
- Download History
- Firefox Cache2 Examinations
- Detailed Visit Type Data
- Form History
- Session Recovery
- Firefox Extensions
- Firefox Cross-Device Synchronization
- Private Browsing and Browser Artifact Recovery
- IE and EdgeHTML InPrivate Browsing
- Chrome, Edge, and Firefox Private Browsing
- Investigating the Tor Browser
- o Identifying Selective Database Deletion
- SQLite and ESE Database Carving and Examination of Additional Browser Artifacts
- o DOM and Web Storage Objects
- Rebuilding Cached Web Pages
- Browser Ancestry
- 6: Windows Forensics Challenge
 - Digital Forensics Capstone
 - Start at the Beginning with a New Set of Evidence
 - Find Critical Evidence Following the Evidence Analysis Methods Discussed Throughout the Week
 - Examine Memory, Registry, Chat, Browser, Recovered Files, Synchronized Artifacts, Installed Malware, and More
 - Build an Investigative Timeline
 - Answer Critical Investigative Questions with Factual Evidence
 - Practice Executive Summary and Report Generation

SANS FOR572:

- 1: Off the Disk and Onto the Wire
 - Web Proxy Server Examination
 - Role of a web proxy
 - Proxy solutions commercial and open source
 - Squid proxy server
 - Configuration
 - Logging
 - o Automated analysis
 - Cache extraction
 - Foundational Network Forensics Tools: tcpdump and Wireshark
 - tcpdump re-introduction
 - pcap file format

- Berkeley Packet Filter (BPF)
- Data reduction
- Useful command-line parameters
- Wireshark re-introduction
- User interface
- Display filters
- o Useful features for network forensic analysis
- Network Evidence Acquisition
- Three core types: full-packet capture, Logs, NetFlow
- Capture devices: switches, taps, Layer 7 sources, NetFlow
- Planning to capture: strategies; commercial and home-built platforms
- o Network Architectural Challenges and Opportunities
- Challenges provided by a network environment
- Future trends that will affect network forensics
- 2: Core Protocols & Log Aggregation/Analysis
 - Hypertext Transfer Protocol (HTTP) Part 1: Protocol
 - Forensic value
 - Request/response dissection
 - Useful HTTP fields
 - HTTP tracking cookies
 - HTTP/2 artifacts
 - Artifact extraction
 - Hypertext Transfer Protocol (HTTP) Part 2: Logs
 - Log formats
 - Expanded mod_forensic logging
 - Analysis methods
 - Domain Name Service (DNS): Protocol and Logs
 - Architecture and core functionality
 - Tunneling
 - Fast flux and domain name generation algorithms (DGAs)
 - Logging methods
 - Amplification attacks
 - Forensic Network Security Monitoring
 - Network Security Monitoring (NSM) emergence from Intrusion Detection Systems (IDSes)
 - Zeek NSM platform
 - Proactive/live use case
 - Post-incident DFIR use case
 - Logs created and formats used
 - JSON parsing with the "jq" utility
 - Community-ID flow hash value
 - Logging Protocol and Aggregation
 - Syslog
 - Dual role: server and protocol
 - Source and collection platforms

- Event dissection
- rsyslog configuration
- Microsoft Eventing
- Deployment model and capabilities
- Windows Event Forwarding
- Architecture
- Analysis mode
- o Log Data Collection, Aggregation, and Analysis
- o Benefits of aggregation: scale, scope, independent validation, efficiency
- Known weaknesses and mitigations
- Evaluating a comprehensive log aggregation platform
- Elastic Stack and the SOF-ELK Platform
- Basics and pros/cons of the Elastic stack
- SOF-ELK
- o Inputs
- Log-centric dashboards
- Use as a data exploration platform
- 3: NetFlow and File Access Protocols
 - NetFlow Collection and Analysis
 - Origins and evolution
 - NetFlow v5 and v9 protocols
 - Architectural components
 - NetFlow artifacts useful for examining encrypted traffic
 - Open-Source Flow Tools
 - o Using open-source tool sets to examine NetFlow data
 - o nfcapd, nfpcapd, and nfdump
 - SOF-ELK: NetFlow ingestion and dashboards
 - File Transfer Protocol (FTP)
 - History and current use
 - o Shortcomings in today's networks
 - Capture and analysis
 - File extraction
 - o Microsoft Protocols
 - Architecture and capture positioning
 - Exchange/Outlook
 - SMB v2, and v3
- 4: Commercial Tools, Wireless, and Full-Packet Hunting
 - Simple Mail Transfer Protocol (SMTP)
 - Lifecycle of an email message
 - Artifacts embedded along the delivery pathway
 - Adaptations and extensions
 - Object Extraction with NetworkMiner
 - Value of commercial tools in a DFIR workflow
 - NetworkMiner

- Capabilities and user interface
- Use cases for object extraction
- Limitations and mitigations
- Wireless Network Forensics
- o Translating analysis of wired networks to the wireless domain
- Capture methodologies: Hardware and Software
- Useful protocol fields
- Typical attack methodologies based on protection mechanisms
- Automated Tools and Libraries
- o Common tools that can facilitate large-scale analysis and repeatable workflows
- Libraries that can be linked to custom tools and solutions
- Chaining tools together effectively
- Full-Packet Hunting with Moloch
- Moloch architecture and use cases
- Methods of ingesting packet data for DFIR workflows
- Session awareness, filtering, typical forensic use cases
- Raw packet searching with hunt jobs
- Enrichment of extracted metadata
- Custom decoding with CyberChef
- 5: Encryption, Protocol Reversing, OPSEC, and Intel
 - Encoding, Encryption, and SSL/TLS
 - Encoding algorithms
 - Encryption algorithms
 - Symmetric
 - Asymmetric
 - Profiling SSL/TLS connections with useful negotiation fields
 - Analytic mitigation
 - Perfect forward secrecy
 - Meddler-in-the-Middle (MITM)
 - Malicious uses and their artifacts
 - o Benevolent uses and associated limitations
 - Common MITM tools
 - Network Protocol Reverse Engineering
 - o Using known protocol fields to dissect unknown underlying protocols
 - Pattern recognition for common encoding algorithms
 - Addressing undocumented binary protocols
 - What to do after breaking the protocol
 - Investigation OPSEC and Threat Intel
 - Operational Security
 - Basic analysis can tip off attackers
 - How to mitigate risk without compromising quality
 - Intelligence
 - Plan to share smartly
 - Protect intelligence to mitigate risks

- 6: Network Forensics Capstone Challenge
 - Analysis using only network-based evidence
 - Determine the original source of an advanced attacker's compromise
 - Identify the attacker's actions while in the victim's environment
 - Confirm what data the attacker stole from the victim
 - Present executive-level summaries of your findings at the end of the day-long lab
 - o Document and provide low-level technical backup for findings
 - Establish and present a timeline of the attacker's activities

Unpacking